Equine Lameness & Imaging Techniques

Peter Heidmann DVM MPH
Specialist in Equine Internal Medicine

Montana Equine Medical & Surgical Center
www.montanaequine.com 406-285-0123
Types of lameness

• **Skeletal Disease**
 – Any type of joint inflammation
 • Hock, pastern, stifle, coffin joints
 • Most often cumulative stress
 – Wear and Tear
 • Following injury
 • Developmental Diseases
 • Usually worsens during flexion test
 – Diagnosis: Radiographs, CT/MRI, Scintigraphy

• **Soft Tissue**
 – Tendons, Ligaments, Muscles, Bursa
 – Usually improves with rest, worsens after work
 – Diagnosis: Ultrasound, CT/MRI
Orthopedic Abnormalities: Bone

• Routine Diagnostics:
 – Radiographs
 • Digital and Computed Radiology
 • +/- Fluoroscopy
Arthritis

- Hock Arthritis, Pastern Arthritis
 - “Ring-Bone”
 - Wear-and-Tear
 - Gradually increasing inflammation over months or years
 - Acute Trauma
 - Collateral Ligament Tears
 - Chip Fractures

- Diagnosis:
 - Where?
 - Nerve and/or Joint Blocks
 - What?
 - Radiographs
Radiographic Changes post Soft Tissue Injury

• Collateral: “CO”-lateral
 – Injury follows twisting and shearing trauma
 • Worst in deep footing
 – Provides stability to joints
 • Medial to Lateral Support
 • Wrapping can support collateral ligaments

• Response to Injury
 – Varying Degrees of Instability
 – Joint is unstable : new bone formation
Nuclear Scintigraphy

- Measures bone metabolism
 - Technesium isotope “bound” to phosphorus
 - Increased metabolism with inflammation
 - Gamma Camera measures density of isotope
Soft Tissue Injury

• Routine Diagnostics:
 – Ultrasound
Soft Tissue Injury

• Tendons and Ligaments are fiber bundles
 – When fibers tear: Produces pain, weakens the entire unit

• Classically:
 – Occur with rapid change in direction
 – More Frequent with deep footing
 – Moderate Intermittent Lameness
 – Worse towards outside of circle

• Diagnosis:
 – Where? Nerve Blocks
 – What?
 • * Ultrasound *
 • MRI/CT Scan
Flexor Tendon Injuries

• Mild “Bow”: Peritendinous Swelling
 – E.g. “Bandage Bow”
 – Short-Term Rest - Weeks

• Severe “Bow”:
 – Fiber Tearing
 – Long-term rest - Months

• The Classic Soft Tissue Injury
 – Early: Obvious to See and feel
 – Late: May palpates normal
 • May have minimal Lameness until extended work
Suspensory Ligament

- Occurs during sliding stops
- Suspensory Branches
 - Just above the fetlock joint
- Origin of the Suspensory
 - Just below the knee/hock
Computed Tomography

Magnetic Resonance Imaging
Arthroscopic Evaluation

- Synovial Structures
 - Joint, Tendon Sheath
- Offers direct visual evaluation of the area
- Areas inaccessible to U/S or MRI
 - E.g. Deep Flexor Tendon within Tendon Sheath
 - Cruciate Ligaments of Stifle
Digital Radiography vs MRI
MRI: Magnetic Resonance Imaging

- Powerful magnet induces flux “vibrations” in tissue
- Different tissues vibrate differently
 - Complex Algorithms Generate Images
- High Power (1 T) vs. Low Power (0.3 T)
Computed Tomography: CT
Creates a series of circular Radiographs: “Slices”

Computer processes Images → Reassembles in ANY plane
So when do you need CT?
Heel Pain

- Aka “Navicular Disease”
- Navicular Bone is rarely the problem

- Instead:
 - Solar/Pedal Pain
 - Deep Digital Flexor Tendon
 - Sesamoidean Ligaments
 - Collateral Ligaments (Pastern, Coffin Jts.)
 - Navicular Bursa, Impar Lig.
 - Suspensory Lig. of Navicular
Treatments

• *Trimming and shoeing:
 – Hoof-pastern Axis:
 • Maintaining strong, wide heels
 • Minimizing the toe to ease Break-Over
 – “Bute” as needed
 – Side Effects
 – Does not treat the primary inflammation
• Shockwave
 – Minimize pain
 – Stimulate soft-tissue healing
• Navicular Bursa Injections
 – Symptomatic Therapy
• Coffin Joint Injections
 – Coffin Joint Pain may be a component
 – “Reservoir” for treating the entire region
Contrast Enhanced CT

- **Helical**
 - Rapid
 - 1 slice per second
 - 45 seconds per limb
 - Thin slices
 - Min 1 mm

- **Contrast**
Contrast Enhanced CT

- **Equine use:**
 - **Intra-arterial**
 - 100 – 150 mL
 - Concurrent scanning and administration
 - Blood vessel i.d.
 - Contrast extravasation
Case I

8 Year-old Warmblood Medial Lobe DDF Tear

Very Difficult to ID without Contrast
Case II: WB Jumper

- Blocked to Palmar Digital Nerve
- Blocked to DFTS

Radiographs were Normal...
Case II

8 year old Warmblood

TS and PD to block
Case II

8 Year-old Warmblood Jumper

88 limbs

59 DDFT

26 CL
Case II
Case III

5 yo reining horse

PDNn – No Change

Abaxial Sesamoid - Resolved
Further Evaluation

Radiographic Evaluation

NSF

77 Horses
25% NSF
Areas of Interest
Collateral Ligament Injury Of The Coffin Joint

Often Will Not Improve With Coffin Joint Anesthesia
2nd most common soft tissue lesion in foot area

• Collateral ligament injuries
Collateral Ligament of the Coffin Joint
Thank You!!!
heidmanndvm@mac.com
406-285-0123
406-220-1221

Peter Heidmann DVM MPH
Specialist in Equine Internal Medicine
heidmanndvm@mac.com
Montana Equine Medical & Surgical Center
www.montanaequine.com 406-285-0123